Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg.

نویسندگان

  • Jiro Doke
  • Arthur D Kuo
چکیده

We compared two hypothesized energetic costs for swinging the human leg quickly. The first cost is to perform mechanical work on the leg, and the second is to produce muscle force cyclically at high frequencies. Substantial metabolic energy is expended to perform isolated leg swinging, especially at rates greater than the leg's natural pendular frequency. To determine whether the production of muscle force contributes to this cost, we measured oxygen consumption in human subjects (N=6) performing isolated swinging of the leg at frequencies 0.7-1.1 Hz. Amplitude of swing was varied as a function of frequency so that the rate of positive mechanical work performed on the leg remained fixed. We expected that the cost of producing force would increase, in contrast to the cost of performing work. The results showed that average rate of positive mechanical work performed on the leg remained nearly constant as a function of frequency, at 0.073+/-0.014 W kg(-1). Net metabolic rate, however, increased by 53%, from 0.66 W kg(-1) to 1.01 W kg(-1). Work may be performed on the leg and with a proportional metabolic cost, but it cannot explain the substantial increases observed here. Metabolic energy expenditure appears to increase in proportion with muscle force or torque, and in inverse proportion to duration of force. This energetic cost may be associated with cyclical calcium transport, where rate-limiting of crossbridge attachments may require greater sarcoplasmic calcium concentration at high frequencies of leg swinging to produce the same amplitude of muscle force. It may also be relevant to moving the legs back and forth relative to the body during walking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanics and energetics of swinging the human leg.

We measured how much metabolic energy is expended to swing a human leg. A previous dynamical model of walking predicted that increasing metabolic costs for walking with step length and step frequency trade-off against each other to determine the optimum step combination at a given speed. Simple pendulum dynamics indicate that the cost of walking at high step frequencies could be associated with...

متن کامل

The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.

We examined the changes in muscle energy use in guinea fowl running at 1.5 m s-1 either unloaded, or carrying trunk loads equal to 23% of body mass, or loads on their distal legs equal to a total of 5% of body mass. We estimated muscle energy use by measuring blood flow to all of the leg muscles using injected microspheres. Total blood flow to the leg muscles increased by approximately 15% unde...

متن کامل

Metabolic energy and muscular activity required for leg swing in running.

The metabolic cost of leg swing in running is highly controversial. We investigated the cost of initiating and propagating leg swing at a moderate running speed and some of the muscular actions involved. We constructed an external swing assist (ESA) device that applied small anterior pulling forces to each foot during the first part of the swing phase. Subjects ran on a treadmill at 3.0 m/s nor...

متن کامل

Energy cost and muscular activity required for leg swing during walking.

To investigate the metabolic cost and muscular actions required for the initiation and propagation of leg swing, we applied a novel combination of external forces to subjects walking on a treadmill. We applied a forward pulling force at each foot to assist leg swing, a constant forward pulling force at the waist to provide center of mass propulsion, and a combination of these foot and waist for...

متن کامل

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2007